

Replication of DNA Section 2

DNA Replication

Key Idea: In DNA replication, the DNA molecule unwinds, and the two sides split. Then, new bases are added to each side until two identical sequences result.

• DNA replication is the process of making a copy of DNA.

DNA Replication

 Each double-stranded DNA helix is made of one new strand of DNA and one original strand of DNA.

Replication Proteins

Key Idea: During the replication of DNA, many proteins form a machinelike complex of moving parts.

- A DNA helicase is a protein that unwinds the DNA double helix during DNA replication.
- A DNA polymerase is a protein that catalyzes the formation of the DNA molecule by moving along each strand and adding nucleotides that pair with each base.

DNA Helicase

These enzymes wedge themselves between the two strands of the double helix and break the hydrogen bonds between the base pairs.

DNA Polymerase

- DNA polymerases also have a "proofreading" function.
- The DNA polymerase can backtrack, remove the incorrect nucleotide, and replace it with the correct one.

Prokaryotic and Eukaryotic Replication

Key Idea: In prokaryotic cells, replication starts at a single site. In eukaryotic cells, replication starts at many sites along the chromosome.

 The word distinct means distinguished as not being the same.

Prokaryotic DNA Replication

- Replication in prokaryotes begins at one place along the loop.
- Replication occurs in opposite directions until the forks meet on the opposite side of the loop.

Eukaryotic DNA Replication

 Replication starts at many sites along the chromosome. This process allows eukaryotic cells to replicate their DNA faster than prokaryotes.